Data Pipeline Architecture
A Data Pipeline Architecture is a blueprint or framework for moving data from various sources to a destination. It involves a sequence of steps or stages that process data, starting with collecting raw data from multiple sources and then transforming and preparing it for storage and analysis.
The architecture includes components for data ingestion, transformation, storage, and delivery. The pipeline might also have various tools and technologies, such as data integration platforms, data warehouses, and data lakes, for storing and processing the data.
Data pipeline architectures are crucial for efficient data management, processing, and analysis in modern businesses and organizations.
We break down data pipeline architecture into a series of parts and processes, including:
Data ingestion
Sources:
Data sources refer to any place or application from which data is collected for analysis, processing, or storage. Examples of data sources include databases, data warehouses, cloud storage systems, files on local drives, APIs, social media platforms, and sensor data from IoT devices.
Data can be structured, semi-structured, or unstructured, depending on the source. The selection of the source fully depends on the intended use & the requirements of the data pipeline or analytics application.
Joins
The data flows in from multiple sources. Joins are the logic implemented to define how the data is combined. When performing joins between different data sources, the process can be more complex than traditional database joins due to differences in data structure, format, and storage.
Extraction
Data extraction is the process of extracting or retrieving specific data from a larger dataset or source. This can involve parsing through unstructured data to find relevant information or querying a database to retrieve specific records or information.
Data extraction is an important part of data analysis, as it allows analysts to focus on specific subsets of data and extract insights and findings from that data.
Data Transformation
Standardization
Data standardization, also known as data normalization, is the process of transforming and organizing data into a consistent format that adheres to predefined standards.
It involves applying a set of rules or procedures to ensure that data from different sources or systems are structured and formatted uniformly, making it easier to compare, analyze, and integrate.
Data standardization typically involves the following steps:
- Data cleansing
- Data formatting
- Data categorization
- Data validation
- Data integration
Correction
Data correction, also known as data cleansing or data scrubbing, refers to the process of identifying and rectifying errors, inconsistencies, inaccuracies, or discrepancies within a dataset.
Data Storage
Load
In data engineering, data loading refers to the process of ingesting or importing data from various sources into a target destination, such as a database, data warehouse, or data lake.
It involves moving the data from its source format to a storage or processing environment where it can be accessed, managed, and analyzed effectively.
Automation
Data pipeline automation refers to the practice of automating the process of creating, managing, and executing data pipelines.
A data pipeline is a series of interconnected steps that involve extracting, transforming, and loading (ETL) data from various sources to a target destination for analysis, reporting, or other purposes.
Automating this process helps streamline data workflows, improve efficiency, and reduce manual intervention.